Prove that tan^2(x)=1/(cos^2(x))-1

tan^2(x)=1/(cos^2(x))-1 Left hand side of the equation (LHS)=tan^2(x) Use the identity tan(x)=sin(x)/cos(x) and substitute it into the LHS LHS=sin^2(x)/cos^2(x) Use the identity sin^2(x)+cos^2(x)=1 and rearrange to make sin^2(x) the subject sin^2(x)=1-cos^2(x) Substitute this into the LHS: sin^2(x)/cos^2(x)=1-cos^2(x)/cos^2(x) Simplify this to give the RHS of the equation given:1-cos^2(x)/cos^2(x)=1/(cos^2(x))-1 Therefore the LHS=RHS

PA
Answered by Phoebe A. Further Mathematics tutor

2295 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How can I show that the lines between sets of points are perpendicular?


How can you divide an algebraic expression by another algebraic expression?


Given y=x^3-x^2+6x-1, use diffferentiation to find the gradient of the normal at (1,5).


How do I find the limit as x-->infinity of (4x^2+5)/(x^2-6)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning