Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]

First, we use the trig identities: cos2x=cos^2x-sin^2x, cos^2x+sin^2x=1 and sin2x=2sinxcosx to transform the integral to ∫(cos2x)/(1+sin2x)dx.
We know that ∫f'(x)/f(x)dx = ln|f(x)|+c, so we let f(x)=1+sin2x. f'(x) can then be found by differentiating f(x), so f'(x) = 2cos2x.
So we multiply top and bottom of the fraction by 2, and take out a factor of 1/2 to express the integral as: (1/2)∫(2cos2x)/(1+sin2x)dx, which can be integrated using the above rule to get (1/2)ln|1+sin2x|+ c.
We then substitute the limits given, to get (1/2)ln(1+1)-(1/2)ln(1+0) = (1/2)ln(2).

Answered by Abby C. Maths tutor

13244 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=e^(x^2+2x)


The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


How do you simplify something of the form Acos(x) + Bsin(x) ?


Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences