Integrate ∫_(-1)^1 3/√(x+2) dx using the substitution u x+2

Step 1:Replace any obvious in the integral with the substitution u=x+2 ∫_(-1)^1 3/√u dx

Step 2: Differentiate the substitution u=x+2 to find an expression for dx (to differentiate multiply by the power and then minus one from the power): du/dx=1 du=dx

Step 3: Change the limits and replace in the integral: When x=1, u=1+2=3 When x=-1, u=-1+2=1 So the integral with respect to u looks like this, ∫_(1)^3 3/√u du

Step 4: Rewrite the equation so that it can be integrated, so 3/√u can be written as 3u^-1/2

Step 5: Integrate ∫_(1)^3 3u^-1/2 du (to integrate add one to the power and then divide by the new power, then substitute in the limits subtracting the top from the bottom)and write in its simplest form : ∫_(1)^3 3u^-1/2 du = [6u^1/2]_1^3 = (6x3^1/2)-(6x1^1/2) = 6√3-6√1 = 6√3-6 = 6(√3-1) (final answer)

Answered by Micaela Y. Maths tutor

4863 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Using factorization, solve x^2 + 10x + 24 = 0


If 4x + 3y = 4 and x + 2y = 2 what are the values of x and y ?


How do you calculate ratios? Example question: 'White paint costs £2.80 per litre, Blue paint costs £3.50 per litre, White paint and blue paint are mixed in the ratio 3:2. Work out the cost of 18 litres of the mixture [4 marks]' AQA Mathematics (8300)


The first four terms of an arithmetic sequence are : 11, 17, 23, 29. In terms of n, find an expression for the nth term of this sequence.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences