Differentiate with respect to x: y=xln(x)

Recall the product rule for differentiation. If y=uv, where u and v are functions defined by functions of x, then we can take the derivative of y as: y'=u'v+v'u () (where ' denotes the derivative) Applying this rule to our example: y=xlnx. Then we can denote u=x, v=ln(x) Hence: u'=1 v'=1/x Applying (), we have u'v=ln(x) , v'u=1 Giving y'=ln(x)+1

Answered by George P. Maths tutor

5296 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


For a given function F(x), what does the graph of the function F(x+2) look like in comparrison to F(x)?


Find the integral of arctan(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences