Differentiate with respect to x: y=xln(x)

Recall the product rule for differentiation. If y=uv, where u and v are functions defined by functions of x, then we can take the derivative of y as: y'=u'v+v'u () (where ' denotes the derivative) Applying this rule to our example: y=xlnx. Then we can denote u=x, v=ln(x) Hence: u'=1 v'=1/x Applying (), we have u'v=ln(x) , v'u=1 Giving y'=ln(x)+1

GP
Answered by George P. Maths tutor

6598 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the differential of a constant zero?


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


How do you find the turning point of a parabola using its equation? using its equation?


Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning