Differentiate with respect to x: y=xln(x)

Recall the product rule for differentiation. If y=uv, where u and v are functions defined by functions of x, then we can take the derivative of y as: y'=u'v+v'u () (where ' denotes the derivative) Applying this rule to our example: y=xlnx. Then we can denote u=x, v=ln(x) Hence: u'=1 v'=1/x Applying (), we have u'v=ln(x) , v'u=1 Giving y'=ln(x)+1

GP
Answered by George P. Maths tutor

6584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation : dy/dx - x^3 -5x = 0


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


(https://qualifications.pearson.com/content/dam/pdf/A-Level/Mathematics/2013/Exam-materials/6666_01_que_20160624.pdf) Question 6.(i)


Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning