If a and b are the roots of the quadric polynomial 2x^2+6x+7 what are a+b and ab?

The phrase "a and b are roots of 2x^2+6x+7" is just a way of saying that x=a and x=b solve the equation 2x^2+6x+7=0. Check out that by diving by 2 on both sides of this equation we get that that x=a and x=b solve x^2+3x+3.5=0. So a and b are roots of the polynomial x^2+3x+3.5, which has leading coefficient 1. Therefore it can be written as x^2+3x+3.5=(x-a)(x-b)=x^2-(a+b)x+ab. Equating coefficients of same degree: a+b=-3 ab=3.5

Answered by Guillermo C. Maths tutor

2927 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 5x – 2 > 3x + 11


How do I use completion of the square to solve a quadratic function?


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


How should I divide up my time during the exam?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences