Answers>Maths>IB>Article

If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.

The equations for an arithmetic sequences are 1) Un = u1 + (n - 1)d 2) Sn = n/2(2*u1 + (n-1)d) 3) Sn = n/2(u1 + un)

The first step is to calculate the common difference, d. This is done using the first equation Un = u1 + (n - 1)d. We use the fourth term to calculate calculate d:

12.5 = u1 + 3d 27.5 = u1 +9d 15 = 6d d =15/6 d = 2.5

Therefore u1 = 5

For S20 we use the second equation Sn = n/2(2*u1 + (n-1)d).

S20 = 20/2 * (2(5) + (20-1)2.5) = 10 * (10 + 47.5) = 575

NK
Answered by Ndalukile K. Maths tutor

2373 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Three girls and four boys are seated randomly on a straight bench. What is the probability that the boys sit together and the girls sit together.


A sequence of numbers have the property that x, 12, y, where x > 0, y > 0, form a geometric sequence while 12, x, 3y form an arithmetic sequence. A)If xy = k, find k. B)Find the value of x and y.


Let f(x) = px^2 + qx - 4p, where p is different than 0. Showing your working, find the number of roots for f(x) = 0.


Given that y = arcos(x/2) find dy/dx of arccos(x/2) and hence find the integral from 0 to 1 of arcos(x/2)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences