Answers>Maths>IB>Article

If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.

The equations for an arithmetic sequences are 1) Un = u1 + (n - 1)d 2) Sn = n/2(2*u1 + (n-1)d) 3) Sn = n/2(u1 + un)

The first step is to calculate the common difference, d. This is done using the first equation Un = u1 + (n - 1)d. We use the fourth term to calculate calculate d:

12.5 = u1 + 3d 27.5 = u1 +9d 15 = 6d d =15/6 d = 2.5

Therefore u1 = 5

For S20 we use the second equation Sn = n/2(2*u1 + (n-1)d).

S20 = 20/2 * (2(5) + (20-1)2.5) = 10 * (10 + 47.5) = 575

Answered by Ndalukile K. Maths tutor

2312 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the most difficult topic in HL Maths?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


The normal to the curve x*(e^-y) + e^y = 1 + x, at the point (c,lnc), has a y-intercept c^2 + 1. Determine the value of c.


Find the differential of y=arcsinx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences