Find the equation of the tangent at x=1 for the curve y=(4x^2+1)^3

The tangent is the straight line passing through x=1, touching the curve only at that point. For x=1, y=(4+1)^3=125 Using the chain rule we obtain dy/dx = 38x(4x^2+1)^2. To then get the gradient of the tangent we take dy/dx at x=1. dy/dx[x=1]= 38(4+1)^2 = 600. As tangent is a straight line the equation is in the form y=mx+c with m = dy/dx[x=1]. We simply sub in (x,y)=(1,125) and m=600 to find c. 125=600+c c=-475 So the equation of the tangent is y=600x-475

Answered by Jacob H. Maths tutor

3170 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you know when to integrate by parts?


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


What is the indefinite integral ∫5exp(3-4x)dx ?


The equation " x^3-3x+1=0 " has three real roots. Show that one of the roots lies between −2 and −1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences