Find the equation of the tangent at x=1 for the curve y=(4x^2+1)^3

The tangent is the straight line passing through x=1, touching the curve only at that point. For x=1, y=(4+1)^3=125 Using the chain rule we obtain dy/dx = 38x(4x^2+1)^2. To then get the gradient of the tangent we take dy/dx at x=1. dy/dx[x=1]= 38(4+1)^2 = 600. As tangent is a straight line the equation is in the form y=mx+c with m = dy/dx[x=1]. We simply sub in (x,y)=(1,125) and m=600 to find c. 125=600+c c=-475 So the equation of the tangent is y=600x-475

Answered by Jacob H. Maths tutor

3173 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 16x^2 + 7x - 3, find dy/dx [3 marks]


The line L has equation 7x - 2y + 11 = 0, Find the gradient of l


Evaluate gf(-5) for the functions f(x)=3x+7, g(x)=3x^2+6x-9


Find the coordinates of the minimum point of the curve y = 3x^(2) + 9x + 10


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences