Solve the following set of simultaneous equations: 3x + 2y = 15 & 9x + 4y = 1

  1. Label your equations 1 and 2.
  2. Look to eliminate one of your variables to create a third equation with only one variable.
  3. To do this multiply the first equation by 2 to obtain: 6x + 4y =30 *Label as equation 3
  4. Now both equation 2 and 3 contain the term 4y, which means we are now able to eliminate y from the set of equations.
  5. Subtract equation 3 from equation 1 to obtain -3x = 29.
  6. Rearrange to find the value of x by diving both sides my -3, resulting in x = -29/3.
  7. We have now found our x value. With this new information, we can input the x value into any of our 3 equations to obtain our y value. *Best to choose an equation which hasn't been manipulated
  8. Substituting into equation 1 and rearranging we obtain y = 22.
  9. We have now found the solutions which satisfy both our original equations. x = -29/3 & y = 22. *Check they are correct by substituting both values into one of the equations.
Chris A. avatar
Answered by Chris A. Maths tutor

5897 Views

See similar Maths GCSE tutors
Cookie Preferences