Solve the following set of simultaneous equations: 3x + 2y = 15 & 9x + 4y = 1

  1. Label your equations 1 and 2.
  2. Look to eliminate one of your variables to create a third equation with only one variable.
  3. To do this multiply the first equation by 2 to obtain: 6x + 4y =30 *Label as equation 3
  4. Now both equation 2 and 3 contain the term 4y, which means we are now able to eliminate y from the set of equations.
  5. Subtract equation 3 from equation 1 to obtain -3x = 29.
  6. Rearrange to find the value of x by diving both sides my -3, resulting in x = -29/3.
  7. We have now found our x value. With this new information, we can input the x value into any of our 3 equations to obtain our y value. *Best to choose an equation which hasn't been manipulated
  8. Substituting into equation 1 and rearranging we obtain y = 22.
  9. We have now found the solutions which satisfy both our original equations. x = -29/3 & y = 22. *Check they are correct by substituting both values into one of the equations.
Answered by Chris A. Maths tutor

5506 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A) Multiply out 6(n - 2). B) Factorise psquared - 5p


Ayo is 7 years older than Hugo. Mel is twice as old as Ayo. The sum of their three ages is 77 Find the ratio of Hugo's age to Ayo's age to Mel's age.


Part 1 of a test has 60 marks, Part 2 has 100 marks. James scores 75% on part 1 and 48% on part 2. To pass the full test, he needs 60% of the total marks, does he pass?


Factorise 7x^2+4x-3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences