Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)

We first find the complementary function by guessing y=e^(kx). Substituting this into the equation d^2y/dx^2 + (3/2)dy/dx + y = 0. we find k^2 + (3/2)k + 1 = 0 which factorises into (k+2)(k+1/2). So our complementary function is y= Ae^(-2x) + Be^(-x/2). Now we find any particular integral by guessing y = Le^(-4x). Substituting this in to the equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x) we find that L(16e^(-4x) - 4e^(-4x) + e^(-4x)) = 22e^(-4x) and L=2. So the solution to the differential equation is y= Ae^(-2x) + Be^(-x/2) + 2e^(-4x) //

NE
Answered by Nathan E. Further Mathematics tutor

6796 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


How do I integrate (sin x)^6?


What is the meaning of having a 3 by 3 matrix with determinent 0. Both geometrically and algebriaclly.


Find the vector equation of the line of intersection of the planes 2x+y-z=4 and 3x+5y+2z=13.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences