Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)

We first find the complementary function by guessing y=e^(kx). Substituting this into the equation d^2y/dx^2 + (3/2)dy/dx + y = 0. we find k^2 + (3/2)k + 1 = 0 which factorises into (k+2)(k+1/2). So our complementary function is y= Ae^(-2x) + Be^(-x/2). Now we find any particular integral by guessing y = Le^(-4x). Substituting this in to the equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x) we find that L(16e^(-4x) - 4e^(-4x) + e^(-4x)) = 22e^(-4x) and L=2. So the solution to the differential equation is y= Ae^(-2x) + Be^(-x/2) + 2e^(-4x) //

NE
Answered by Nathan E. Further Mathematics tutor

7041 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Show that the matrix A is non-singular for all real values of a


Prove by induction that n! > n^2 for all n greater than or equal to 4.


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning