Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)

We first find the complementary function by guessing y=e^(kx). Substituting this into the equation d^2y/dx^2 + (3/2)dy/dx + y = 0. we find k^2 + (3/2)k + 1 = 0 which factorises into (k+2)(k+1/2). So our complementary function is y= Ae^(-2x) + Be^(-x/2). Now we find any particular integral by guessing y = Le^(-4x). Substituting this in to the equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x) we find that L(16e^(-4x) - 4e^(-4x) + e^(-4x)) = 22e^(-4x) and L=2. So the solution to the differential equation is y= Ae^(-2x) + Be^(-x/2) + 2e^(-4x) //

NE
Answered by Nathan E. Further Mathematics tutor

7266 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve has the equation (5-4x)/(1+x)


How do you find the cube root of z = 1 + i?


Write (1+2i) /(2-i) in form x+iy


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning