Find the derivative of f(x)=x^2*e^x+x

You can split the derivative into 2 parts: dx/dy (x^2*e^x) + dx/dy (x)

For the first part you have to use the product rule, so let U=x^2 V=e^x U'=2x V'=Chain rule

V'=dx/dy(e^x)dx/dy(x)=e^x1=e^x

Returning to the product rule, f'(x)=U'V+UV' So, (2xe^x)+(x^2e^x) =x(x+2)e^x

Second part is dx/dy(x)=1

Final answer =x(x+2)e^x+1

BR
Answered by Benedict R. Maths tutor

3837 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity (4cos(2x))/(1+cos(2x)) = 4-2sec^2(x)


Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta


Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.


Differentiate y=(4x - 5)^5 by using the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning