Find the derivative of f(x)=x^2*e^x+x

You can split the derivative into 2 parts: dx/dy (x^2*e^x) + dx/dy (x)

For the first part you have to use the product rule, so let U=x^2 V=e^x U'=2x V'=Chain rule

V'=dx/dy(e^x)dx/dy(x)=e^x1=e^x

Returning to the product rule, f'(x)=U'V+UV' So, (2xe^x)+(x^2e^x) =x(x+2)e^x

Second part is dx/dy(x)=1

Final answer =x(x+2)e^x+1

BR
Answered by Benedict R. Maths tutor

3477 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


How do you integrate the function cos^2(x)


f(x)=6/x^2+2x i) Find f'(x) ii) Find f"(x)


How do you integrate a fraction when x is on the numerator and denominator?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences