Find the derivative of f(x)=x^2*e^x+x

You can split the derivative into 2 parts: dx/dy (x^2*e^x) + dx/dy (x)

For the first part you have to use the product rule, so let U=x^2 V=e^x U'=2x V'=Chain rule

V'=dx/dy(e^x)dx/dy(x)=e^x1=e^x

Returning to the product rule, f'(x)=U'V+UV' So, (2xe^x)+(x^2e^x) =x(x+2)e^x

Second part is dx/dy(x)=1

Final answer =x(x+2)e^x+1

Answered by Benedict R. Maths tutor

3232 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I calculate the maximum value of the compound angle formulae Rsin(x+a) and Rcos(x+a)?


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences