Write y = x^2 + 4x + 6 in the form y = (x + a)^2 + b. What is the minimum value of y?

This is an example of completing the square. Notice that when we expand y = (x + a)^2 + b we get y = x^2 + 2ax + a^2 + b. By comparing coefficients (ie, making sure the number x is multiplied by and the constants are the same on both sides), we can see that: 2a = 4, a^2 + b = 6. Solving the simultaneous equations: 2a = 4 -> a = 2, a^2 + b = 6 -> 2^2 + b = 6 -> b = 2, So y = (x + 2)^2 + 2. As the square of a number is never less than 0, the minimum of y is when (x + 2)^2 = 0, ie y = 0 + 2 = 2.

Answered by Naomi S. Maths tutor

6765 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the inequality 4m +3 > 15


A)Write x^2 – 8x + 25 in the form (x – a)^ 2 + b. (B) Write down the coordinates of the turning point of the graph of y = x2 – 8x + 25. (C)Hence describe the single transformation which maps the graph of y = x2 onto the graph of y = x2 – 8x + 25.


How do you solve the simultaneous equations 3x+y=5 and x-y=3?


Expand the brackets? (x+4)(2x-3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences