Write y = x^2 + 4x + 6 in the form y = (x + a)^2 + b. What is the minimum value of y?

This is an example of completing the square. Notice that when we expand y = (x + a)^2 + b we get y = x^2 + 2ax + a^2 + b. By comparing coefficients (ie, making sure the number x is multiplied by and the constants are the same on both sides), we can see that: 2a = 4, a^2 + b = 6. Solving the simultaneous equations: 2a = 4 -> a = 2, a^2 + b = 6 -> 2^2 + b = 6 -> b = 2, So y = (x + 2)^2 + 2. As the square of a number is never less than 0, the minimum of y is when (x + 2)^2 = 0, ie y = 0 + 2 = 2.

Answered by Naomi S. Maths tutor

6704 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is cuberoot(64x1000)?


How to factorise a quadratic with a coefficient of x^2 greater than one, for example 4x2+4x-15?


v^2=u^2 + 2as u=12 a=-3 s = 18 Find v


There are 700 students in a high school. 10% of them play team sports. 36 students play football, and 22 students play both football and basketball. When choosing one student from the school, what is the probability of them playing basketball only?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences