An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?

To begin with, we need to draw a graph with all of the forces acting on a body.

From that, we can see that the net force Fnet = Fg - Fc , where Fg is gravitational force and Fc is centripetal force acting on a body.

Due to the fact, that the object is in a stable orbit around the Earth, Fnet = 0 N and Fg = Fc -> GmM/(R+h)^2=mv^2/(R+h) -> GM/(R+h)=v^2 and v = (GM/(R+h))^0.5

Inserting values for Earth’s mass (M=5.972×10^24 kg) , and radius (R=6 371 km), we get that v=7785.9 m/s

To find the orbital period, we use the formula T = 2 * pi * (R+h) / v = 5302.8 s

DA
Answered by Domas A. Physics tutor

3235 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two current carrying wires are placed next to each other and anti-parallel currents are allowed to flow. Is the magnetic force between the wires attractive or repulsive?


Explain the photo-electric effect and how the particle theory of light explains the phenomena. State the equation used to the determine the kinetic energy of a photo-electron and explain the origin of the terms used in your equation.


Explain why the pressure exerted by a gas increases as they are heated at constant volume, with references to the kinetic theory of gases.


How does Einsteins explanation of the photons explain the effect of varying intensity of light in the Photoelectric effect?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning