An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?

To begin with, we need to draw a graph with all of the forces acting on a body.

From that, we can see that the net force Fnet = Fg - Fc , where Fg is gravitational force and Fc is centripetal force acting on a body.

Due to the fact, that the object is in a stable orbit around the Earth, Fnet = 0 N and Fg = Fc -> GmM/(R+h)^2=mv^2/(R+h) -> GM/(R+h)=v^2 and v = (GM/(R+h))^0.5

Inserting values for Earth’s mass (M=5.972×10^24 kg) , and radius (R=6 371 km), we get that v=7785.9 m/s

To find the orbital period, we use the formula T = 2 * pi * (R+h) / v = 5302.8 s

DA
Answered by Domas A. Physics tutor

3252 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An ultraviolet wave of continuous frequency reflects from a solid surface back in the direction of the transmitter. Assuming no amplitude is lost, describe and explain the behaviour of the particles in the medium between the transmitter and surface.


How do I find the x and y components of a vector?


How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?


Describe, using a diagram, the forces acting on the system of an object tethered to a string, rotating around a fixed point in free space. Will the string ever become horizontal?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning