An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?

To begin with, we need to draw a graph with all of the forces acting on a body.

From that, we can see that the net force Fnet = Fg - Fc , where Fg is gravitational force and Fc is centripetal force acting on a body.

Due to the fact, that the object is in a stable orbit around the Earth, Fnet = 0 N and Fg = Fc -> GmM/(R+h)^2=mv^2/(R+h) -> GM/(R+h)=v^2 and v = (GM/(R+h))^0.5

Inserting values for Earth’s mass (M=5.972×10^24 kg) , and radius (R=6 371 km), we get that v=7785.9 m/s

To find the orbital period, we use the formula T = 2 * pi * (R+h) / v = 5302.8 s

DA
Answered by Domas A. Physics tutor

2998 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive an expression for the centripetal acceleration of a body in uniform circular motion.


State Lenz's law and hence describe and explain what happens to a magnet travelling through a metal tube


A piece of card is released from rest at a height of 0.5m above a light gate. It falls freely and a computer measures the velocity as it passes through the light gate to be 3.10m/s. What is the acceleration due to gravity measured by this experiment?


On the line of centres between the Earth and the Moon, there is a point where the net gravitational force is zero. Given that the distance between the two is 385,000 km, and that the Earth has a mass 81x that of the Moon, how far is this point from Earth?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning