An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?

To begin with, we need to draw a graph with all of the forces acting on a body.

From that, we can see that the net force Fnet = Fg - Fc , where Fg is gravitational force and Fc is centripetal force acting on a body.

Due to the fact, that the object is in a stable orbit around the Earth, Fnet = 0 N and Fg = Fc -> GmM/(R+h)^2=mv^2/(R+h) -> GM/(R+h)=v^2 and v = (GM/(R+h))^0.5

Inserting values for Earth’s mass (M=5.972×10^24 kg) , and radius (R=6 371 km), we get that v=7785.9 m/s

To find the orbital period, we use the formula T = 2 * pi * (R+h) / v = 5302.8 s

DA
Answered by Domas A. Physics tutor

2691 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Topic - force as rate of change of momentum; (i) force on a wall due to water from a hose, (ii) force on a table as a rope is dropped onto it.


A pellet of mass 8.8 g embeds itself in a wooden block of 450 g which is suspended by a light in-extensible string. After the collision the block reaches a max height of 0.63 m. Calculate the initial velocity of the pellet.


Why does light change direction when it hits a surface with a different refractive index?


Water flows through an electric shower at a rate of 6kg per minute. Assuming no heat is transferred to the surroundings, what power is required to heat the water by 20K as it flow through the shower?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences