GCSE 2011: Solve the simultaneous equations: y^2 = 2x + 29 and y = x - 3

This was the final question in AQA's 2011 non-calculator paper, and most top candidates will be looking to score all 5 marks that are on offer. Our usual technique for simultaneous equations isn't going to work , because we have a y^2 rather than a y. Instead we'll need to square the 2nd equation: y = x - 3, y^2 = (x - 3)^2 = x^2 - 6x + 9 From the first equation we have: y^2 = 2x + 29. Setting these two equations equal gives: 2x + 29 = x^2 - 6x + 9. Subtracting (2x + 29) from both sides gives: 0 = x^2 - 8x - 20. Factorising we get: 0 = (x-10)(x+2). We could use the quadratic formula or completing the square if you prefer. x = 10, x = -2. We've got our values of x; just need to sub back into y = x - 3 to get our answer: x = 10 implies y = 10 - 3 = 7. x = -2 implies y = -2 - 3 = -5. We could put these back into the first equation to check we have the right answer. Not too bad for the very last question, although care is needed making the substitution to get rid of y.

Answered by Ross G. Maths tutor

6959 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 5x-2>3x+11


15 machines work at the same rate. Together, the 15 machines can complete an order in 8 hours. 3 of the machines break down after working for 6 hours. The other machines carry on working until the order is complete. In total, how many hours does EACH


How do tree diagrams work? Consider: A bag contains 5 red counters and 3 blue counters. James draws a counter from the bag at random and keeps it. James then draws a second counter at random. What is the probability that James takes two red counters?


How to solve simultaneous equations?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences