GCSE 2011: Solve the simultaneous equations: y^2 = 2x + 29 and y = x - 3

This was the final question in AQA's 2011 non-calculator paper, and most top candidates will be looking to score all 5 marks that are on offer. Our usual technique for simultaneous equations isn't going to work , because we have a y^2 rather than a y. Instead we'll need to square the 2nd equation: y = x - 3, y^2 = (x - 3)^2 = x^2 - 6x + 9 From the first equation we have: y^2 = 2x + 29. Setting these two equations equal gives: 2x + 29 = x^2 - 6x + 9. Subtracting (2x + 29) from both sides gives: 0 = x^2 - 8x - 20. Factorising we get: 0 = (x-10)(x+2). We could use the quadratic formula or completing the square if you prefer. x = 10, x = -2. We've got our values of x; just need to sub back into y = x - 3 to get our answer: x = 10 implies y = 10 - 3 = 7. x = -2 implies y = -2 - 3 = -5. We could put these back into the first equation to check we have the right answer. Not too bad for the very last question, although care is needed making the substitution to get rid of y.

Answered by Ross G. Maths tutor

7237 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A store is having a sale on sofas. One sofa was originally £400 but is reduced by 60% in the sale. What is the price of the sofa in the sale?


A class has 30 students. The mean height of the 14 boys is 1.52m. The mean height of all the students is 1.48m. Work out the mean height of the girls.


Consider an isosceles triangle ABC, where AB=AC=1, M is the midpoint of BC, and <BAM=<CAM=x. Use trigonometry to find an expression for BM and by finding BC^2, show that cos2x = 1 - 2(sinx)^2.


Find the equation of the straight line passing trough the points (-2,1 ) and (1, 4).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences