Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.

First, recall that tan(x) can be rewritten in terms of sine and cosine.

tan(x) = sin(x)/cos(x)

The rephrasing of our question suggests that we should try the substitution rule of integration.

We should substitute u=cos(x), since then du = -sin(x) dx and so sin(x) dx = -du

So the integral of tan(x) = the integral of sin(x)/cos(x) = the integral of -1/u = - ln|u| +C = - ln|cosx| +C

Now, - ln|cos(x)| = ln(|cos(x)|-1) = ln(1/|cos(x)|) = ln|sec(x)|

Therefore, the integral of tan(x) is ln|sec(x)| + C

Answered by Anja S. Maths tutor

200027 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative and following function and hence find the value of coordinates for when the function is at a stationary point:


Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


The polynomial p(x) is given by p(x) = x^3 – 5x^2 – 8x + 48 (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). [2 marks] (ii) Express p(x) as a product of three linear factors. [3 marks]


Simplify: (3x+8)/5 > 2x + 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences