A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.

In order to find the velocity, we need to know the distance covered by the ball in a known length of time. We are given the distance, 5.0 m, therefore we need to compute the time of flight of the ball. This will be the time taken by the ball to fall from the height of 1.2 m to the ground. Note that the initial velocity given to the ball is horizontal, this means that it has no vertical components and it does not affect the vertical fall of the ball. This simplifies the problem since we can find the time of flight simply calculating the time that it takes for a stationary object to fall from 1.2 m. We know the formula for the displacement y of a body experiencing constant acceleration: y= 1/2g(t^2) where g is the gravitational acceleration constant. We rearrange the equation and substitute the values of g and y= 1.2m to find t= 0.5s (note that we must quote our result with the same number of significant figures as the data given in the problem). Hence the ball traveled 5.0m in 0.5s, so we find the magnitude of the horizontal velocity, v= 10 m/s.

Answered by Francesco S. Physics tutor

10455 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain how bright fringes arise in Young's double slit experiment


Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.


What is a potential divider?


The flow of water in a pipe is turbulent. Define turbulent flow.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences