A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.

In order to find the velocity, we need to know the distance covered by the ball in a known length of time. We are given the distance, 5.0 m, therefore we need to compute the time of flight of the ball. This will be the time taken by the ball to fall from the height of 1.2 m to the ground. Note that the initial velocity given to the ball is horizontal, this means that it has no vertical components and it does not affect the vertical fall of the ball. This simplifies the problem since we can find the time of flight simply calculating the time that it takes for a stationary object to fall from 1.2 m. We know the formula for the displacement y of a body experiencing constant acceleration: y= 1/2g(t^2) where g is the gravitational acceleration constant. We rearrange the equation and substitute the values of g and y= 1.2m to find t= 0.5s (note that we must quote our result with the same number of significant figures as the data given in the problem). Hence the ball traveled 5.0m in 0.5s, so we find the magnitude of the horizontal velocity, v= 10 m/s.

Answered by Francesco S. Physics tutor

10066 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe how the average density of matter in the universe affects its ultimate fate?


State the principle of superposition of waves and illustrate it schematically.


what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


State Lenz's law and hence describe and explain what happens to a magnet travelling through a metal tube


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences