Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.

Firstly remember that d/dx(x^n) = nx^(n-1). And so the antiderivative, or integral of x^n, i.e. \int(x^n) = x^(n+1)/(n+1) + C (where C is the integration constant). When integrating with limits, i.e. when we define an interval that we're integrating over, we do not have to worry about the constant C, and so for example: \int(x^3) over [0,1] will be x^4/4 (x=1 - x=0), i.e. = 1^4/4 - 0^4/4 = 1/4.

Hence, for our given function f(x), \int(f(x)) over [0,1] will be ax^3/3 + bx^2/2 + cx/1 (x=1 - x=0) = a/3 + b/2 + c.

Answered by Anvarbek A. Maths tutor

3695 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of sin(x)/x^3 with respect to x


A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


∫(1 + 3√x + 5x)dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences