Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.

Firstly remember that d/dx(x^n) = nx^(n-1). And so the antiderivative, or integral of x^n, i.e. \int(x^n) = x^(n+1)/(n+1) + C (where C is the integration constant). When integrating with limits, i.e. when we define an interval that we're integrating over, we do not have to worry about the constant C, and so for example: \int(x^3) over [0,1] will be x^4/4 (x=1 - x=0), i.e. = 1^4/4 - 0^4/4 = 1/4.

Hence, for our given function f(x), \int(f(x)) over [0,1] will be ax^3/3 + bx^2/2 + cx/1 (x=1 - x=0) = a/3 + b/2 + c.

Answered by Anvarbek A. Maths tutor

3594 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of y=x^2 +sin^2(x) with respect to x between the limits 0 and pi


What is product rule differentiation?


By using partial fractions, integrate the function: f(x) = (4-2x)/(2x+1)(x+1)(x+3)


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences