Differentiate: 2(x^2+2)^3

This is a chain rule question. Unlike in ordinary differentiation we have more than just the single term 'x' with coefficient 1 raised to the power of something. e.g. x^3 Therefore, there is more steps. We can rewrite the question as 2u^3 with u=x^2+2 as this is more familiar. You can then do the differentiation in terms of u which gives you 6u^2. Now, the extra step is that we have to also differentiate the u and then multiply this by our other answer. Differentiating u gives us 2x which then multiplied by 6u^2 gives us 12x(u^2) Finally, we can now sub back in u=x^2+2 to make sure our final answer is in terms of one variable only. Therefore our final answer is, 12x((x^2+2)^2)

CA
Answered by Charlotte A. Maths tutor

3189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle A has equation x^2+y^2-6x-14y+54=0. Find a) the coordinates of the centre of A, b) the radius of the circle A.


(5 + 2(2^0.5))(7 - 3(2^0.5))


The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning