Differentiate: 2(x^2+2)^3

This is a chain rule question. Unlike in ordinary differentiation we have more than just the single term 'x' with coefficient 1 raised to the power of something. e.g. x^3 Therefore, there is more steps. We can rewrite the question as 2u^3 with u=x^2+2 as this is more familiar. You can then do the differentiation in terms of u which gives you 6u^2. Now, the extra step is that we have to also differentiate the u and then multiply this by our other answer. Differentiating u gives us 2x which then multiplied by 6u^2 gives us 12x(u^2) Finally, we can now sub back in u=x^2+2 to make sure our final answer is in terms of one variable only. Therefore our final answer is, 12x((x^2+2)^2)

CA
Answered by Charlotte A. Maths tutor

3297 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use logarithms to solve the equation 3^(2x+1) = 4^100


The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


How do I find the inverse of a function?


Find the integral between 4 and 1 of x^(3/2)-1 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning