Why doesn't the magnetic force change the velocity of a particle?

Well actually, it does. Remember that the velocity is a vector and so is the force. Since F=ma, the acceleration due to a given force points in the same direction as the force itself. The magnetic force is perpendicular to the direction of motion, and hence so will the acceleration. And we know that when the acceleration is perpendicular to the velocity of a particle, it undergoes uniform circular motion. So, the magnitude of the velocity remains unchanged when the particle is acted upon solely by a magnetic force. Yet, as we just said, the velocity is a vector and hence it is defined by both is magnitude and direction. Since the direction changes, the velocity vector also does change. We call such an acceleration (which is always perpendicular to the velocity) normal or centripetal, as it makes the particle circle around a certain point.

AS
Answered by Ana S. Physics tutor

2907 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Describe the model now used for the structure of an atom. Refer to the constituent particles including their relative masses and charges.


Using newtons laws explain how a falling object can reach terminal velocity (6)


A van of mass 2150kg with a driving force of 10,000 is accelerating at 3 m/s^2. Find the resultant force acting in the van, and also the frictional force on the van.


What is thermionic emission?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences