How to do the chain rule.

The chain rule is used for functions 'inside' other functions. We have learnt to differentiate functions like x^2, y^20, e^x, -sin(x), and we will use these results in the chain rule. Let's look at an example, f(x) = (2x+1)^(1/3). Notice how we have a function (2x+1) 'inside' of another function (u^(1/3)). The chain rule says that if we have a function f(u) in terms of a function u(x) then df/dx=df/dudu/dx, in other words we differentiate the outside and multiply it by the derivative of the inside. In our example f(u) = u^(1/3) and u(x) = 2x+1. Then df/du = 1/3u^(-2/3) = 1/3*(2x+1)^(-2/3) and du/dx = 2. So df/dx = 21/3(2x+1)^(-2/3)

Answered by Jamie C. Maths tutor

3120 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial p(x) is given by p(x) = x^3 – 5x^2 – 8x + 48 (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). [2 marks] (ii) Express p(x) as a product of three linear factors. [3 marks]


Differentiate (x^0.5)ln(x) with respect to x.


Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


Find the derivative of the following function: f(x) = x(x^3 + 2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences