How to do the chain rule.

The chain rule is used for functions 'inside' other functions. We have learnt to differentiate functions like x^2, y^20, e^x, -sin(x), and we will use these results in the chain rule. Let's look at an example, f(x) = (2x+1)^(1/3). Notice how we have a function (2x+1) 'inside' of another function (u^(1/3)). The chain rule says that if we have a function f(u) in terms of a function u(x) then df/dx=df/dudu/dx, in other words we differentiate the outside and multiply it by the derivative of the inside. In our example f(u) = u^(1/3) and u(x) = 2x+1. Then df/du = 1/3u^(-2/3) = 1/3*(2x+1)^(-2/3) and du/dx = 2. So df/dx = 21/3(2x+1)^(-2/3)

JC
Answered by Jamie C. Maths tutor

3329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Have you taught before?


Integrate e^(2x)


What is the turning point on the curve f(x) = 2x^2 - 2x + 4


A circle with centre C has equation x^2 + y^2 + 2x + 6y - 40 = 0 . Express this equation in the form (x - a)^2 + (x - b)^2 = r^2. Find the co-ordinates of C and the radius of the circle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences