How to do the chain rule.

The chain rule is used for functions 'inside' other functions. We have learnt to differentiate functions like x^2, y^20, e^x, -sin(x), and we will use these results in the chain rule. Let's look at an example, f(x) = (2x+1)^(1/3). Notice how we have a function (2x+1) 'inside' of another function (u^(1/3)). The chain rule says that if we have a function f(u) in terms of a function u(x) then df/dx=df/dudu/dx, in other words we differentiate the outside and multiply it by the derivative of the inside. In our example f(u) = u^(1/3) and u(x) = 2x+1. Then df/du = 1/3u^(-2/3) = 1/3*(2x+1)^(-2/3) and du/dx = 2. So df/dx = 21/3(2x+1)^(-2/3)

Answered by Jamie C. Maths tutor

3319 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2x^2 +8x +7 in the form A(x+B)^2 + C, where A, B and C are constants


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


What is the integral of x^x?


Find the first derivative of f(x). f(x) = ln(3x^2+2x+1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences