How to do the chain rule.

The chain rule is used for functions 'inside' other functions. We have learnt to differentiate functions like x^2, y^20, e^x, -sin(x), and we will use these results in the chain rule. Let's look at an example, f(x) = (2x+1)^(1/3). Notice how we have a function (2x+1) 'inside' of another function (u^(1/3)). The chain rule says that if we have a function f(u) in terms of a function u(x) then df/dx=df/dudu/dx, in other words we differentiate the outside and multiply it by the derivative of the inside. In our example f(u) = u^(1/3) and u(x) = 2x+1. Then df/du = 1/3u^(-2/3) = 1/3*(2x+1)^(-2/3) and du/dx = 2. So df/dx = 21/3(2x+1)^(-2/3)

Answered by Jamie C. Maths tutor

3268 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 4x/(x^2 +5) find dy/dx, writing your answer as a single fraction in its simplest form


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


Rewrite (2+(12)^(1/2))/(2+3^(1/2)) in the form a+b((c)^(1/2))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences