How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?

  1. First, decompose the initial velocity (u) into x and y components using trigonometry. These are x= ucos(theta) and y=usin(theta)
  2. Note that the x (or horizontal) component does not change but the y component decreases as the projectile moves up because gravity.
  3. when the projectile is at its maximum height, its velocity is zero, so taking the first half of the flight motion and use v=u+at to find the time taken to reach maximum height.
  4. Then simply noticing that it takes the exact same amount of time to fall from the max height as it took to get there, we just multiply the time we found above by 2 to get the total time of flight.
JB
Answered by Jonathon B. Physics tutor

8731 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the force on a moving charged particle in a magnetic field, and why is no work done by this force when it accelerates the particle?


When a 470 micro farad capacitor is discharged through a fixed resistor R, the pd across it decreases by 80% in 45 s. Calculate the time constant of the circuit


Explain the change of quark character associated with the beta-plus decay and deduce the equation.


A rocket travels with constant velocity in a straight line in deep space. A ball is thrown from the back to the front (ie from the thrusters to the nose). Describe the path of the ball. Describe the path if the rocket were accelerating along this line.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning