How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?

  1. First, decompose the initial velocity (u) into x and y components using trigonometry. These are x= ucos(theta) and y=usin(theta)
  2. Note that the x (or horizontal) component does not change but the y component decreases as the projectile moves up because gravity.
  3. when the projectile is at its maximum height, its velocity is zero, so taking the first half of the flight motion and use v=u+at to find the time taken to reach maximum height.
  4. Then simply noticing that it takes the exact same amount of time to fall from the max height as it took to get there, we just multiply the time we found above by 2 to get the total time of flight.
Answered by Jonathon B. Physics tutor

7779 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


Explain Rutherford's alpha particle scattering experiment and what it provided evidence for


In a circuit with a thermistor and bulb, what happens to the brightness of the bulb as the temperature increases?


What is the force on a moving charged particle in a magnetic field, and why is no work done by this force when it accelerates the particle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences