Solve the simultaneous equations: x^2 + y^2 = 29 and y - x = 3

To solve these equations we need to eliminate one of the variables, so make y the subject of the second equation: y = x + 3. Now y can be substituted into the first equation: x^2 + (x+3)^2 = 29. Expanding (x+3)^2 = x^2 + 6x + 9, so the equation is now x^2 + x^2 + 6x + 9 = 29

Simplifying the equation gives this: 2x^2 + 6x - 20 = 0, which can be simplified further by dividing through by 2: x^2 + 3x - 10 = 0. Factorising the equation gives (x-2)(x+5) = 0, so x = 2 or -5.

Substitute the values of x into y = x+3, to give y = 5 when x = 2 and y = -2 when x = -5.

Answered by Trisha G. Maths tutor

3661 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.


HIGHER TIER a) Factorise the following equation into two bracket form: 2x^2-5x-12. b)2x^2-5x-12=0. Solve this equation to find the values of x, using your answer to part a). BONUS c) Sketch the function y=2x^2-5x-12, showing any x intercepts


Expand these brackets 3x(x - 2)


How do you complete the square?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences