How to find the derivative of arctan(x)

Let y = arctan(x). Then x = tan(y).

Differentiate using the chain rule and rearrange: d(x)/dx = d(tany)/dx So 1 = sec^2(y) * dy/dx dy/dx = 1/sec^2(y)

But from identity sin^2(y) + cos^2(y) = 1 We can derive, by diving across by cos^2(y) tan^2(y) + 1 = sec^2(y)

So by combining: dy/dx = 1/sec^2(y) sec^2(y) = tan^2(y) + 1 y = arctan(x)

Get the result: dy/dx = 1/(x^2 + 1)

Maybe attempt to do this for a general inverse function: y = f^-1(x) y' = (f'(f^-1(x)))^-1 With geometric explanation from graph.

MR
Answered by Matthew R. Maths tutor

12794 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative with respect to x, of 5cos(x)+ 4sin(x)


How do I differentiate f(x) = cos(x)/x?


Using mathematical induction, prove De Moivre's Theorem.


Derive from the standard quadratic equation, the form of the quadratic solution


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences