How to find the derivative of arctan(x)

Let y = arctan(x). Then x = tan(y).

Differentiate using the chain rule and rearrange: d(x)/dx = d(tany)/dx So 1 = sec^2(y) * dy/dx dy/dx = 1/sec^2(y)

But from identity sin^2(y) + cos^2(y) = 1 We can derive, by diving across by cos^2(y) tan^2(y) + 1 = sec^2(y)

So by combining: dy/dx = 1/sec^2(y) sec^2(y) = tan^2(y) + 1 y = arctan(x)

Get the result: dy/dx = 1/(x^2 + 1)

Maybe attempt to do this for a general inverse function: y = f^-1(x) y' = (f'(f^-1(x)))^-1 With geometric explanation from graph.

MR
Answered by Matthew R. Maths tutor

14076 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of xe^(-2x) between the limits of 0 and 1 with respect to x.


Find the derivative of sin(x)/x^3 with respect to x


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning