Differentiate y=sin(x)*x^2.

Using the chain rule, we let u = sin(x) and v = x^2. Then dy/dx = udv/dx + vdu/dx. dv/dx = 2x and du/dx = cos(x). So dy/dx = sin(x)2x + x^2cos(x).

Answered by Lucy M. Maths tutor

3183 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


Integrate, by parts, y=xln(x),


Given that y=x/(2x+5) find dy/dx.


Integrate cos^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences