Find the integral of xe^(-2x) between the limits of 0 and 1 with respect to x.

We can identify xe^(-2x) as a product and hence we will most probably need to use integration by parts.

We then set u = x and v' = x^(-2x). It is important to do it this way round so that when we differentiate u we are left with u' = 1 which is what will make the second integral easier to solve.

Substitute these values into the formula for integration by parts being sure to be careful to avoid any sign errors. Finally substitute in the limits and you should get the answer of 0.25 - 0.75e^(-2)

Answered by Tom B. Maths tutor

5799 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx when y=x^3 + sin2x


How to do Integration by Parts?


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


A Block of mass 2kg is on an a smooth inclined plane where sin@ = 3/5 at point A. Point B is 5 meters down the incline. Find the time it will take for the block to reach point given it is at rest at point A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences