(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).

This question is a typical example aimed to test the student's understanding of the quotient rule, a technique which is used very often in calculus problems. Answer: For a function f(x) = cosx/sinx = u/v, let u = cosx and v =sinx Now, du/dx = -sinx and dv/dx = cosx d/dx (f(x)) = ( v du/dx - u dv\dx ) \ v^2 <- Quotient rule Applying the quotient rule: d/dx (cosx/sinx) = sinx(-sinx) - cosx(cosx) / sin^2(x) = -sin^2(x) - cos^2(x) / sin^2(x) = -1(sin^2(x) + cos^2(x)) / sin^2(x) (Using the fact: sin^2(x) + cos^2(x) = 1) = -1 / sin^2(x) as required. Method: > First assign values to u and v. > Then differentiate u and v. > Apply the quotient rule. > Simplify expression using trigonometric identity.

Answered by Mark H. Maths tutor

14286 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled


A curve has the equation y=12+3x^4. Find dy/dx.


Differentiate with respect to x, y = (x^3)*ln(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences