Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.

One can treat complex multiplication as polynomial multiplication, but remembering i^2 = -1. To perform polynomial multiplication, multiply each term one by one, then add them together. Hence (3+i)(1+2i) = 3x1 + 3x2i + ix1 + ix2i = 3 + 6i + i + 2 i^2 = 3 + 6 i + i + 2x(-1) = 3 + 6i + i - 2. Now collect like terms, so terms with i add together and the same with terms without i. This gives (3+i)(1+2i) = 1 + 7i. So a = 1, b = 7.

Answered by Alvin S. Maths tutor

8769 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I go about finding the coordinates minimum point on the curve eg y = e^(x) - 9x -5?


Solve 5x/(2x+1) - 3/(x+1) = 1


Differentiate 4x^2 + 2ln3x + e^x


You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences