Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.

One can treat complex multiplication as polynomial multiplication, but remembering i^2 = -1. To perform polynomial multiplication, multiply each term one by one, then add them together. Hence (3+i)(1+2i) = 3x1 + 3x2i + ix1 + ix2i = 3 + 6i + i + 2 i^2 = 3 + 6 i + i + 2x(-1) = 3 + 6i + i - 2. Now collect like terms, so terms with i add together and the same with terms without i. This gives (3+i)(1+2i) = 1 + 7i. So a = 1, b = 7.

AS
Answered by Alvin S. Maths tutor

9934 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


Differentiate y=x/sin(x)


Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2


f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning