Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

JI
Answered by Jonny I. Maths tutor

11543 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that 12 cos 30° - 2 tan 60° can be written in the form root (k) where k is an integer.


How do I calculate a percentage increase? For example; there are 15 fish in a fish tank, after a year they have bred and now there are 20 fish in the tank. By what % has the number of fish increased?


A) Raf, Jasmin and Carlos swim lengths of the pool for charity. Raf swims 30 more lengths than Jasmin. Jasmin swims four times as many lengths as Carlos. Altogether they swim 372 lengths. How many lengths each person swim?


Expand the following equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences