Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

Answered by Jonny I. Maths tutor

10771 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the possible values of x for x^2 = 36-5x.


A and B are on the line 3x+2y=6. At A x=0, what is y? At B y=0, what is x?


Rearranging Formulae


Cylinder A has the volume 8π cm^3 and the height 2 cm. Cylinder B is a similar shape with a volume of 216 cm^3. i) find the linear scale factor. ii) find the surface area of cylinder B


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences