Sketch the curve y=4-(x+3)^2, showing the points where the curve crosses the x-axis and any minimum or maximum points.

This equation rearranges to give -y=(x+3)^2-4, which is very similar to our curve y=(x+3)^2-4 from before. In fact, replacing y with -y in an equation is equivalent to reflecting the curve through the x-axis. We then take the points (-5,0), (-1,0) and (-3,-4) from before and replace y with -y, giving (-5,0), (-1,0) and (-3,4). We have found where the new curve crosses the x-axis and its minimum/maximum. The graph is an inverted u-shape since we have a -x^2 in the equation so (-3,4) is a maximum point.

JI
Answered by Jonny I. Maths tutor

3860 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Express x^2+8x+15 in the form (x+a)^2-b


Make s the subject of the equation: 4st + 8 = 5r


Explain the use of the quadratic formula to solve quadratic equations.


Expand and simplify the following expression: (2x-1)(3x+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning