The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).

When we find dy/dx we find the gradient of the curve at (3,1). Start by differentiating the left hand side (LHS) like so.. (whiteboard). Remember every time we differentiate a y value we multiply by dy/dx. This is because we differentiate y with respect to y and then multiply by dy/dx to get y differentiated with respect to x (by the chain rule). We now differentiate the RHS... (whiteboard) Now collect the dy/dx terms on the LHS and the other terms on the RHS like so... (whiteboard) Now sub in x=3 and y=1 and we obtain dy/dx=1/7.

CR
Answered by Caitlin R. Maths tutor

5038 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning