The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).

When we find dy/dx we find the gradient of the curve at (3,1). Start by differentiating the left hand side (LHS) like so.. (whiteboard). Remember every time we differentiate a y value we multiply by dy/dx. This is because we differentiate y with respect to y and then multiply by dy/dx to get y differentiated with respect to x (by the chain rule). We now differentiate the RHS... (whiteboard) Now collect the dy/dx terms on the LHS and the other terms on the RHS like so... (whiteboard) Now sub in x=3 and y=1 and we obtain dy/dx=1/7.

Answered by Caitlin R. Maths tutor

4438 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?


how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


The line AB has equation 3x + 5y = 7 (a. Find the gradient of AB)


Find a solution to sec^(2)(x)+2tan(x) = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences