Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)

Use the product rule d(u.v)/dx = u.(dv/dx) + v(du/dx). Calculate the LHS as such first. (Demonstrate on whiteboard.) Then calculate the RHS. (Demonstrate on whiteboard.) Group the dy/dx terms on one side of the equation and factor them out. Divide the factor through, to give the answer. (Demonstrate on white board) Put in x = 1 and y = 1 in to the equation to yield the answer. dy/dy = 1.

Answered by Sophie P. Maths tutor

4950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y=Ax^2 where A is a constant


(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1)+B/(x+1)+C(x+3) Find the values of the constants A, B and C


What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?


Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences