Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)

Use the product rule d(u.v)/dx = u.(dv/dx) + v(du/dx). Calculate the LHS as such first. (Demonstrate on whiteboard.) Then calculate the RHS. (Demonstrate on whiteboard.) Group the dy/dx terms on one side of the equation and factor them out. Divide the factor through, to give the answer. (Demonstrate on white board) Put in x = 1 and y = 1 in to the equation to yield the answer. dy/dy = 1.

Answered by Sophie P. Maths tutor

5052 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.


Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


What is a good method to go about sketching a polynomial?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences