Why does d/dx (tan(x)) = sec^2(x)?

This result comes from using a trig identity and the quotient rule. First, we write tan(x) as sin(x)/cos(x). Then we apply the quotient rule. After doing the standard derivatives, the numerator of our fraction becomes another trig identity, sine squared + cosine squared, which equals one. Now, looking at our fraction, we can see we have 1/cos^2(x). We can then rewrite this as (1/cos(x))^2. We apply our final trig identity now, 1/cos(x)=sec(x), and we see that d/dx tan(x) = sec^2(x). (Due to the nature of writing mathematics, this is far easier to represent and explain using the whiteboard)

Answered by Tutor42661 D. Maths tutor

9155 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


What is a stationary point and how do I find where they occur and distinguish between them?


How do I express y=acosx+bsinx in the form y=Rcos(x-c)?


Consider the function f(x) = 2/3 x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient:


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences