Why does d/dx (tan(x)) = sec^2(x)?

This result comes from using a trig identity and the quotient rule. First, we write tan(x) as sin(x)/cos(x). Then we apply the quotient rule. After doing the standard derivatives, the numerator of our fraction becomes another trig identity, sine squared + cosine squared, which equals one. Now, looking at our fraction, we can see we have 1/cos^2(x). We can then rewrite this as (1/cos(x))^2. We apply our final trig identity now, 1/cos(x)=sec(x), and we see that d/dx tan(x) = sec^2(x). (Due to the nature of writing mathematics, this is far easier to represent and explain using the whiteboard)

Answered by Tutor42661 D. Maths tutor

8657 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't understand how to visualise differentiation, please could you show my an example to allow me to understand what it actually is better?


How do I multiply 2 matrices?


The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


x = 3t - 4, y = 5 - (6/t), t > 0, find "dy/dx" in terms of t


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences