How can the cosine rule be derived?

Sorry in advance for the lack of a diagram, which would have made this explanation so much clearer. Also, the published version of this seems to ignore Unicode formatting, so I will add underscores (_) where a subscript was intended and carets (^) where a superscript was intended. I know this is ugly but I don't see a better way.

Consider a triangle with sides A, B and C. The angle between sides B and C we will call a. The line that meets side A at right angles and passes through the corner of B and C we will call Z. The angle between Z and B we will call a_B and the angle between Z and C we will call a_C, hence,

a=a_B+a_C.

By considering the two right angled triangles, the length of side A can be expressed as follows,

A=Bsin(a_B)+Csin(a_C).

Squaring both sides of this equation, we have,

A^2=B^2sin^2(a_B)+C^2sin^2(a_C)+2BCsin(a_B)sin(a_C).

Next, we note that the cosine double angle formula can be applied to give the following,

cos(a)=cos(a_B+a_C)=cos(a_B)cos(a_C)-sin(a_B)sin(a_C).

Subsituting the sines term into the previous equation gives,

A^2=B^2sin^2(a_B)+C^2sin^2(a_C​)-2BCcos(a)+2BCcos(a_B)cos(a_C).

Using the identity,

sin^2(x)=1-cos^2(x),

we have,

A^2=B^2+C^2-2BCcos(a)-B^2cos^2(a_B)-C^2cos^2(a_C​)+2BCcos(a_B)cos(a_C).

The three rightmost terms will factorise to give,

A^2=B^2+C^2-2BCcos(a)-[Bcos(a_B)-Ccos(a_C)]^2.

By simple trigonometry, both Bcos(a_B) and Ccos(a_C) are equal Z, hence the rightmost term vanishes and we are left with the cosine rule,

A^2=B^2+C^2-2BCcos(a).

PT
Answered by Peter T. Maths tutor

3666 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5


Why do we have to add the +c when integrating a function


For rectangles of area 100 m^2 what is the perimeter of the rectangle with the smallest perimeter?


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences