Find the set of values for x for which x^2 - 9x <= 36

Rearrange to get x^2 - 9x - 36 <= 0 Solve quadratic (x-12)(x+3) <= 0 Solve for x x = 12, x = -3

Now, we have key points 12 and -3, we need the range of values for x where x^2 - 9x - 36 <= 0.

So, we can visualise quadratic. It's positive, so the range of values lower than y=0 will be -3 < x < 12. This is the answer.

Answered by Daniel D. Maths tutor

9003 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you integrate a function like f(x)=x(1-x)^6?


What is the difference between a definite integral and an indefinite integral?


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences