How do I integrate sin^2 (x) dx?

The key to answering this question is to recognise that a common substitution of u=sin(x) wont work straight away so we must write the integral in a different form. Knowing that cos(2x)=1-2sin^2(x), the sin^2(x)=(1/2)(1-cos(2x)). Therefore the integral equals the integral of (1/2)(1-cos(2x)). We know the integral of cos(2x) dx is (1/2)*(sin(2x)). Thus the integral of sin^2(x)dx equals (x-(1/2)*sin(2x))/2.

OU
Answered by Oghenebrume U. Maths tutor

172419 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x and write in its simpliest form, Y=(2x-3)/x^2?


Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


What is the gradient of the curve y = 2x^3 at the point (2,2)?


Why is (x^3 - 7x^2 +13x - 6) divisible with (x-2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning