How can the first order kinematic (SUVAT) equations be derived?

We start with the following two observations about an object undergoing constant acceleration. First, its acceleration is equal to the change in its velocity over time, hence,

a=(v-u)/t.

Rearranging gives the first SUVAT equation,

v=u+at.

Secondly, we observe that the average velocity of the object is equal to the distance it travels over time. The average velocity of an object undergoing constant acceleration is the average of its initial and final velocities, hence,

(u+v)/2=s/t.

Substituting the value of v in the first SUVAT equation, we have,

(2u+at)/2=s/t.

Rearranging, we have the second SUVAT equation,

s=ut+(at^2)/2.

To derive the third equation, the original equations are rearranged to give,

v-u=at

and

v+u=2s/t.

These equations can be multiplied to give,

(v+u)(v-u)=2as.

Multiplying out the brackets and rearranging gives the third SUVAT equation,

v^2=u^2+2as.

Answered by Peter T. Physics tutor

11219 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the energy changes in the 4 stages of a bungee jump - at the top, in freefall, when the cord is stretching and at the bottom


What is the function of the control rods in the entire fission reactor proccess?


What is the Rutherford scattering experiment and what did it tell us about the nature of the atom?


Define Simple Harmonic Motion


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences