Solve the equation |3x + 4| = |3x - 11|

Here we have an equation involving absolute values. As a general rule |a| = +a and |a| = -a. We can apply that to our RHS. In the first case we get that 3x + 4 = 3x - 11, however after we subtract 3x from both sides we are left with 4 = -11, which is obviously false. Therefore, we conclude that there are no solutions for |a| = +a and we move on to |a| = -a. Applying our formula again we have 3x + 4 = - (3x - 11) or 3x + 4 = - 3x + 11. Rearranging we get that 6x = 7 or that x = 7/6.

Answered by Viktoria B. Maths tutor

7626 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I differentiate a function of the form y=(f(x))^n?


Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


What is the chain rule and how does it work?


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences