An electrical heater supplies 500J of heat energy to a copper cylinder of mass 32.4g Find the increase in temperature of the cylinder. (Specific heat capacity of copper = 385 J*kg^-1*Celsius^-1

The temperature of a body of mass m and specific heat capacity c rises by change in temperature (delta)T when an amount of heat Q is added to it (Q = mc(delta)T). From the equation we see that the change in temperature is simply equal to the heat divided by the mass times the specific heat capacity of copper ((delta)T = Q / m*c). Now we can just plug in the numbers to find the answer. (Note that the mass is not given in SI units and we have to convert it 32.4g = 0.0324kg). From here follows that the increase in temperature is equal to 500 / 0.0324 * 385 or 40.0834, which we can round to 40.1 degrees Celsius.

VB
Answered by Viktoria B. Physics tutor

9424 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the threshold frequency of a photon to excite and then emit photoelectrons from a material?


Explain the workings of a mass spectrometer


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


How can a car be changing velocity yet not changing speed?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning