A car of mass 800 kg is accelerated horizontally by constant net force of 1920 N for 9 s. It then breaks for 2 s, but drives off a 5 m high cliff. If μ = 0.85, what is the total horizontal distance travelled by car and its velocity? Ignore air resistance.

F=ma, so a=F/m giving a=2.4m/s^2. When t=9s, v=at, so v=21.6m/s. Friction force is Ff = μF(normal), which is Ff = μmg, so Ff = 6670.8N (if g = 9.81m/s^2). Frictional force always acts against the direction of motion. Deceleration due to frictional force d = -Ff/m = -μg = -8.34m/s^2. Speed after 2 seconds of deceleration = 4.9m/s. In free fall we can consider horizontal and vertical velocity components separately. Vertical: need time in which the car falls 5m. h = 1/2gt^2, so t = sqrt(2h/g), which is 1.04s. Horizontal: speed doesn't change, so the distance travelled is s = vt, s = 5.1m. Total horizontal distance: 1/2at^2 + vt + 1/2dt^2 + 5.1 = 128.82m. Considering velocity, we have to calculate both its magnitude and its direction, since velocity is a vector. At the end of free fall horizontal component didn't change, so it's equal to 4.9m/s, while vertical speed gained is v = gt, v = 10.2m/s. The magnitude of the final velocity is therefore sqrt((4.9)^2+(10.2)^2). Its direction is tan(θ) = opp/adj, giving us θ = 26°, or 154° away from normal.

MK
Answered by Martin K. Physics tutor

2931 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A source of green laser light has a wavelength of 560nm, what is its frequency? Give your answer to an appropriate number of significant figures and using the correct units.


Derive the kinetic theory equation pV=Nm/3(crms2) for an ideal gas.


Derive the escape velocity from the surface of a planet with radius, r, and mass, M.


A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning