Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.

The general quadratic equation is ax^2+bx+c=0, now we need to Complete The Square, which allows us to have only one "x" term. First, divide the equation by "a", leaving us with x^2... x^2+(b/a)x+c/a=0. Now C.T.S. (x^2+(b/a)x + (b/2a)^2) + c/a - (b/2a)^2 = 0. Move all non-"x" terms to the other side and simplify first bracket (x+(b/2a))^2 = (b/2a)^2 - c/a. Putting right side over the same denominator gives = (b^2 - 4ca)/4a^2. Taking square root of both sides leaves us with x+b/2a = +- sqrt(b^2-4ca)/2a. Then we just move b/2a to the other side and we get the quadratic formula. The determinant is "b^2-4ca". Depending on its value, it can give us 3 different types of roots. If it is positive, we will get 2 real roots. If it is zero, we get one root that is equal to -b/2a. If it is negative, we will get 2 complex roots.

MK
Answered by Martin K. Maths tutor

5779 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


Integrate 10x(x^1/2 - 2)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning