A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.

Firstly, implicitly differentiate the function to find dy/dx in terms of y and x: dy=dx = (-x-2y)/(2x+y). Secondly, set this equal to zero to obtain an expression of y in relation to x or vice versa: x=-2y. Thirdly, input this into the original function to find the x or y coordinate candidates for P: -3y^2+27=0. Therefore the candidates are y=+/-3. Substituting this into either the original equation or the tangent equation will produce candidates for the x-co-ordinate. However, it is easier to insert it into x=-2y. This produces x=-6, or x=6. Given the provided condition, Q(-6,3).

RP
Answered by Rahul P. Maths tutor

8468 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.


The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


Find the total area enclosed between y = x^3 - x, the x axis and the lines x = 1 and x= -1 . (Why do i get 0 as an answer?)


how do I differentiate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning