A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.

Firstly, implicitly differentiate the function to find dy/dx in terms of y and x: dy=dx = (-x-2y)/(2x+y). Secondly, set this equal to zero to obtain an expression of y in relation to x or vice versa: x=-2y. Thirdly, input this into the original function to find the x or y coordinate candidates for P: -3y^2+27=0. Therefore the candidates are y=+/-3. Substituting this into either the original equation or the tangent equation will produce candidates for the x-co-ordinate. However, it is easier to insert it into x=-2y. This produces x=-6, or x=6. Given the provided condition, Q(-6,3).

Answered by Rahul P. Maths tutor

7307 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of dy/dx at (-2,4) of the curve C: 4x^2 -y^2 + 6xy + 2^y = 0


Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


Why do you not add the 'plus c' when finding the area under a graph using integration even though you add it when normally integrating?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences