What are the differences between arithmetic and geometric sequences?

An arithmetic sequence has a constant difference between each term.
For example: 2,4,6,8,10,12,…
We can see clearly that all the terms differ by +2.
We call this the common difference, d.

A geometric sequence has a constant ratio (multiplier) between each term.
An example is: 2,4,8,16,32,…
So to find the next term in the sequence we would multiply the previous term by 2.
This is called the common ratio, r.

These sequences are closely related as they both have the same first term, but I hope you can see how different they become if they have a common difference or a common ratio.
We can create a decreasing arithmetic sequence by choosing a negative common difference.
Similarly, a decreasing geometric sequence would have a common ratio of less than 1. 

RJ
Answered by Ryan J. Maths tutor

164038 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Frank, Mary and Seth shared some sweets in the ratio 4:5:7. Seth got 18 more sweets than Frank. Work out the total number of sweets they shared.


Simplify the following equation: x^(2) +3x+4^(2)-2


Prove that (2*a^2 + 7a + 3)/(a + 3) is an odd number for any positive integer number, a.


N sweets in a bag. 6 sweets are orange. The rest are yellow. Hannah takes a random sweet from the bag and eats it. She then takes another random sweet from the bag & eats it. The probability Hannah eats 2 orange sweets is 1/3. Show n^2 - n - 90 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning