Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths

When integrating by substitution the first thing to do is change the limits of the integral by subbing them into the equation for u. This gives

u = 5 as the lower limit and

u = 2 for the upper limit.

The next step is to differentiate u wrt to x in order to find dx in terms of du.

du/dx = -2x which rearranges to

dx = -du/2x. Substituting this into the integral gives,

-(x^2)/(2sqrt(u)), x^2 in terms of u is x^2 = 6 - u giving the final integral in terms of u as

-(6 - u)/(2sqrt(u)) between u = 5 and u = 2. This is now a simple integral like those in core 2.

When worked through the final answer will be (13/5)sqrt(5) - (16/3)sqrt(2), leaving the answer in surd form.

CC
Answered by Christopher C. Maths tutor

7691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


How do you find the stationary points on a curve?


Solve the equation 5^(2x) - 12(5^x) + 35 = 0


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning