Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0

We know to find roots of any quadratic equation we use the quadratic formula, [-b +- (b^2 - 4ac)^(1/2)]/2a where a=2, b=6, and c=7.

Plug these values in and we obtain, [-6 +- (-20)^(1/2)]/4. [Remember for imaginary numbers, (-a)^(1/2) = (a^(1/2))*((-1)^(1/2)) = a^(1/2) *i.]

So we have, [-6 +- 25^(1/2)i]/4 since 20^(1/2) = (45)^(1/2) = 25^(1/2). Therefore, our two roots are

a = (-3/2) + [5^(1/2)/2]*i b = (-3/2) - [5^(1/2)/2]*i

SN
Answered by Sam N. Further Mathematics tutor

3165 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


What is the complex conjugate?


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning