Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0

We know to find roots of any quadratic equation we use the quadratic formula, [-b +- (b^2 - 4ac)^(1/2)]/2a where a=2, b=6, and c=7.

Plug these values in and we obtain, [-6 +- (-20)^(1/2)]/4. [Remember for imaginary numbers, (-a)^(1/2) = (a^(1/2))*((-1)^(1/2)) = a^(1/2) *i.]

So we have, [-6 +- 25^(1/2)i]/4 since 20^(1/2) = (45)^(1/2) = 25^(1/2). Therefore, our two roots are

a = (-3/2) + [5^(1/2)/2]*i b = (-3/2) - [5^(1/2)/2]*i

Related Further Mathematics A Level answers

All answers ▸

Find the reflection of point P(2,4,-6) in the plane x-2y+z=6


How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?


find general solution to: x(dy/dx) + 2y = 4x^2


Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences