How to integrate lnx by parts?

Integration by parts formula: ∫ udv/dx = uv - ∫ du/dxv dx

To solve this problem we need to use a trick by thinking of lnx as lnx1
So we can choose: u=lnx, dv/dx=1
The next step is to find du/dx and v.
du/dx=1/x                                          As we have differentiated each side with respect to x
v=x                                                         By integrating each side with respect to x
Now we have all the required parts to use the integration by parts formula.
∫ lnx = lnx
x – ∫ 1/x*x dx
                       = xlnx – ∫ 1 dx
                       = xlnx – x + c

RJ
Answered by Ryan J. Maths tutor

9143 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is (5+3i)*(3+5i)


Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


Differentiate y = 15x^3 + 24x^2 + 6 with respect to x.


Using the Quotient rule, Find dy/dx given that y = sec(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning