How do you show that the centre of a group is a subgroup

To show something is a subgroup we need to show that it satisfies the group axioms. Therefore we need to show that if g and h are in Z(G) then gh is in Z(G), g^-1 is in Z(G), the identity e is in Z(G). As eg = g = ge for all elements g in G we can see e is in Z(G). Then suppose we have g and h in Z(G). Then for all elements j in G we have ghj = gjh as h is in Z(G) = jgh as g is in Z(G). Therefore Z(G) is closed under the group operation. Also we have g^-1 j = g^-1 j e as e is the identity = g^-1 j g g^-1 by definition of inverses = g^-1 g j g^-1 as g is in Z(G) = e j g^-1 = j g^-1 and so g^-1 is in Z(G) and so Z(G) is closed under inverses and is therefore a subgroup of G

Related Further Mathematics A Level answers

All answers ▸

You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


solve the 1st order differential equation 2y+(x*dy/dx)=x^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences