How do you show that the centre of a group is a subgroup

To show something is a subgroup we need to show that it satisfies the group axioms. Therefore we need to show that if g and h are in Z(G) then gh is in Z(G), g^-1 is in Z(G), the identity e is in Z(G). As eg = g = ge for all elements g in G we can see e is in Z(G). Then suppose we have g and h in Z(G). Then for all elements j in G we have ghj = gjh as h is in Z(G) = jgh as g is in Z(G). Therefore Z(G) is closed under the group operation. Also we have g^-1 j = g^-1 j e as e is the identity = g^-1 j g g^-1 by definition of inverses = g^-1 g j g^-1 as g is in Z(G) = e j g^-1 = j g^-1 and so g^-1 is in Z(G) and so Z(G) is closed under inverses and is therefore a subgroup of G

AR
Answered by Alex R. Further Mathematics tutor

3030 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express cos5x in terms of increasing powers of cosx


Write (1+2i) /(2-i) in form x+iy


Prove that (AB)^-1 = B^-1 A^-1


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences