find dy/dx of the equation y=ln(x)2x^2

Here it is necessary to use the chain rule to solve the derivative. If we equate our equation in terms of the following notation: ln(x)='u'and 2x^2='v' and use the chain rule formula dy/dx=udv/dx+vdu/dx we can solve the derivative:

= lnx(4x)+(2x^2)(1/x) = 4xlnx+2x

PG
Answered by Pierce G. Maths tutor

3557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = 5x^6 + 4x*sin(x^2)


Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


How can I improve my mathematics


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences