find dy/dx of the equation y=ln(x)2x^2

Here it is necessary to use the chain rule to solve the derivative. If we equate our equation in terms of the following notation: ln(x)='u'and 2x^2='v' and use the chain rule formula dy/dx=udv/dx+vdu/dx we can solve the derivative:

= lnx(4x)+(2x^2)(1/x) = 4xlnx+2x

Answered by Pierce G. Maths tutor

3499 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


Binomial expansion of (1+4x)^5 up to x^2


Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


Line AB has equation 4x+5y+2=0. If the point P=(p, p+5) lies on AB, find P . The point A has coordinates (1, 2). The point C(5, k) is such that AC is perpendicular to AB. Find the value of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences