Simplify 3x^(2)+13x-30/x^(2)-32

First of all spot that the bottom of the fraction is a result of the difference of two squares and can be rearranged to (x+6)(x-6), making the fraction equal to 3x^(2)+13x-30/(x+6)(x-6). Use this knowledge to look if the top of the fraction can be rearranged into two brackets, one of which is either (x+6) or (x-6). Rearrange 3x^(2)+13x-30 to (x+6)(3x-5) making the fraction equal to (x+6)(3x-5)/(x+6)(x-6). Cancel (x+6) from both the top and bottom of the fraction leaving the simplified version as (3x-5)/(x-6)

NP
Answered by Nicolaas P. Maths tutor

4279 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 4(3x – 2) = 2x – 5


Expand and simplify (x – 9)(x + 2)


How do I solve this linear equation? Angles A and B are in a quadrilateral are in ratio 2:3, angle C is 30 degrees more than angle B and angle D is 90 degrees.


Prove that the square of an odd number is always 1 more than a multiple of 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning